Customer center

We are a boutique essay service, not a mass production custom writing factory. Let us create a perfect paper for you today!

Example research essay topic: Radio Telescopes Radio Waves - 1,285 words

NOTE: Free essay sample provided on this page should be used for references or sample purposes only. The sample essay is available to anyone, so any direct quoting without mentioning the source will be considered plagiarism by schools, colleges and universities that use plagiarism detection software. To get a completely brand-new, plagiarism-free essay, please use our essay writing service.
One click instant price quote

... copes Orbiting telescopes are used to observe the ultraviolet (UV), far infrared, and X-ray portions of the electromagnetic spectrum. The Infrared Astronomical Satellite, placed in orbit in 1983, carried a 22. 5 -inch infrared telescope. Because all matter emits infrared radiation if warm, technologists had to cool the telescope to near absolute zero with liquid helium so its internal heat radiation would not mask radiation it was collecting from deep space objects. Among its many discoveries was a disk of gas surrounding a star, from which planets may be condensing. The Hubble Space Telescope, launched aboard the space shuttle Discovery on April 24, 1990, has special infrared-, UV-, and X-ray-sensitive instruments for the study of structures and systems too faint to be seen clearly with ground-based telescopes.

Because the telescope orbits miles above the Earth and its distorting atmosphere, scientists hoped it would be able to capture and magnify light from about 20 billion light-years away. Just days after the launch, however, NASA engineers discovered major flaws in the telescope's mirrors. Despite this setback, the telescope remained operational and sent back, among other things, evidence of a black hole and information about very young stars to engineers on Earth. For shorter wavelengths, those in the X-ray region of the spectrum, ordinary mirrors will not work. X rays tend to penetrate conventional mirrors rather than be reflected by them. Only if X rays are bounced off mirrors at a small, glancing angle can they be focused.

X-ray satellites, such as Einstein, launched in 1978, and Exist, launched in 1983, carried telescopes with deeply concave metal mirrors shaped so that they could focus X rays onto detectors Radio Telescopes The first radio telescope was built in 1937 by Grote Reber, an American electrical engineer. It looked a little like the reflector of an optical telescope, but it was much bigger: 31 feet in diameter. Its reflector was made of wire screen instead of polished glass or metal. A much larger one, 250 feet in diameter, was built at Jodrell Bank, England, in 1957, and a 328 -foot radio telescope began operating in West Germany in 1971. One such telescope, 1, 000 feet across, was constructed in the 1960 s at Arecibo, Puerto Rico, and fills an entire valley. Although it cannot move, its focal point can be scanned on large cranes.

Radio telescopes made vast new regions of the universe observable on Earth because radio waves penetrate dust and gas that obscure light. For long-wavelength radio waves, however, even the largest telescopes have resolutions not much better than the unaided eye, though they have enormous power to detect weak or distant radio emitters. To overcome this drawback, astronomers developed a new type of telescope that concentrated signals picked up by physically separate telescopes. Such interferometers work by reconstructing the shape of emitted radio waves, which are "sampled" by radio telescopes at various points.

The resolution of such interferometers is comparable to that of a single radio telescope whose diameter is equal to the separation between the individual telescopes that make up the array. One such array, constructed in the 1970 s, is the Very Large Array (VLA) in New Mexico. The VLA consists of 27 radio telescopes, or antennas, spread over 24 miles. Each antenna is an 82 -foot-wide dish mounted on a large pedestal, which is in turn attached to a transporter that moves the 200 -ton antennas on rails laid out in a Y shape.

The entire array can point to any part of the sky and, by changing the locations of the antennas, view a large object in the sky or focus at higher resolution on a small one. The maximum resolution of the VLA is about 1 arc second, which is comparable to that of optical telescopes. The signals from each antenna are carried by cable to a central computer, which electronically combines them into a single image. By combining the signals from radio telescopes scattered across the globe, very high resolutions are possible. The Very Long Baseline Array (VLBA) was the world's largest astronomical instrument in the mid- 1990 s.

It consisted of ten 82 -foot dishes across 5, 000 miles in the United States. With such Very Long Baseline Interferometers (VLBIs), resolutions of a few thousandths of an arc second have been achieved. Early Developments It is likely that the telescope was invented independently and accidentally many times before Galileo turned it on the heavens in 1609. Glass was made in Egypt as early as 3500 BC, and crude lenses have been unearthed in Crete and Asia Minor believed to date from 2000 BC. Euclid wrote about the reflection and refraction of light in the 3 rd century BC, and in the 1 st century AD the Roman writer Seneca noted that the glass globe filled with water referred to by the Greek dramatist Aristophanes could be used as a magnifying glass.

The 11 th-century Arab scientist Alhazen published the results of his experiments with parabolic mirrors and the magnifying power of lenses. Alhazen's works were translated into Latin in 1572, but much earlier Roger Bacon had recognized the usefulness of lenses. The invention of the printing press in the 15 th century, followed by the ever-increasing need for spectacle lenses by scholars, probably made inevitable the final invention of the telescope and its widespread use. It is clear that the oft-repeated statement that the telescope was first invented in 1608 by Hans Lippershey in the United Netherlands, is incorrect. Lippershey made a number of telescopes in 1608 and sold them to the government of the United Netherlands, which was interested in their military applications.

His request for a 30 -year privilege or patent was denied on the grounds that "many other persons had a knowledge of the invention. " Telescopes were on sale in France, Germany, Italy, and England in 1609. Galileo heard of Lippershey's work and reinvented the telescope, using basic optical principles. His first telescope magnified three diameters and consisted of a convex, or outward-curving, lens and a concave, or inward-curving, lens fitted into opposite ends of a tiny lead tube. The results were so gratifying that Galileo made several larger telescopes, grinding his own lenses. His largest telescope was about 1. 7 inches in diameter and had a magnifying power of 33 diameters. With these simple instruments he discovered the mountains and craters of the moon's surface, the satellites of Jupiter, the starry nature of the Milky Way, and the fact that Venus undergoes phases like those of the moon.

His observations showed that Venus is spherical, and goes around the sun, contrary to Ptolemaic theory. Rarely has a new scientific instrument had a more dramatic effect than that of Galileo's telescope. It not only advanced scientific knowledge by enormous strides but also stirred vast waves in philosophy and religion by upsetting the traditional picture of a universe centered on a stationary Earth. In 1659 the Dutch scientist Christiaan Huygens discovered the true nature of Saturn's rings using a telescope measuring 23 feet (7 meters) in length, which he had designed and built himself. In 1663 James Gregory, a Scots mathematician, designed the first reflecting telescope -- the Gregorian reflector. In 1672 England's Isaac Newton built what is now known as the Newtonian reflector, and, that same year in France, N.

Cassegrain designed and built the Cassegrain reflector. The telescope is one of the greatest inventions of all time. They have helped us understand the planets around us and the planets beyond. In the years to come, we will see things that we thought could only be since fiction. Below are just a few of the many things that we can see with this marvelous invention


Free research essays on topics related to: x ray, telescopes, telescope, radio waves, radio telescopes

Research essay sample on Radio Telescopes Radio Waves

Writing service prices per page

  • $18.85 - in 14 days
  • $19.95 - in 3 days
  • $23.95 - within 48 hours
  • $26.95 - within 24 hours
  • $29.95 - within 12 hours
  • $34.95 - within 6 hours
  • $39.95 - within 3 hours
  • Calculate total price

Our guarantee

  • 100% money back guarantee
  • plagiarism-free authentic works
  • completely confidential service
  • timely revisions until completely satisfied
  • 24/7 customer support
  • payments protected by PayPal

Secure payment

With EssayChief you get

  • Strict plagiarism detection regulations
  • 300+ words per page
  • Times New Roman font 12 pts, double-spaced
  • FREE abstract, outline, bibliography
  • Money back guarantee for missed deadline
  • Round-the-clock customer support
  • Complete anonymity of all our clients
  • Custom essays
  • Writing service

EssayChief can handle your

  • essays, term papers
  • book and movie reports
  • Power Point presentations
  • annotated bibliographies
  • theses, dissertations
  • exam preparations
  • editing and proofreading of your texts
  • academic ghostwriting of any kind

Free essay samples

Browse essays by topic:

Stay with EssayChief! We offer 10% discount to all our return customers. Once you place your order you will receive an email with the password. You can use this password for unlimited period and you can share it with your friends!

Academic ghostwriting

About us

© 2002-2024 EssayChief.com